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ABSTRACT: It is well documented that over the tropical oceans, column-integrated precipitable water (pw) and pre-

cipitation (P) have a nonlinear relationship. In this studymoisture budget analysis is used to examine thisP–pw relationship

in a normalized precipitable water framework. It is shown that the parameters of the nonlinear relationship depend on the

vertical structure of moisture convergence. Specifically, the precipitable water values at which precipitation is balanced

independently by evaporation versus bymoisture convergence define a critical normalized precipitable water, pwnc. This is a

measure of convective inhibition that separates tropical precipitation into two regimes: a local evaporation-controlled

regime with widespread drizzle and a precipitable water–controlled regime. Most of the 17 CMIP6 historical simulations

examined here have higher pwnc compared to ERA5, and more frequently they operate in the drizzle regime. When

compared to observations, they overestimate precipitation over the high-evaporation oceanic regions off the equator,

thereby producing a ‘‘double ITCZ’’ feature, while underestimating precipitation over the large tropical landmasses and

over the climatologically moist oceanic regions near the equator. The responses to warming under the SSP585 scenario are

also examined using the normalized precipitable water framework. It is shown that the critical normalized precipitable

water value at which evaporation versus moisture convergence balance precipitation decreases as a result of the competing

dynamic and thermodynamic responses to warming, resulting in an increase in drizzle and total precipitation. Statistically

significant historical trends corresponding to the thermodynamic and dynamic changes are detected in ERA5 and in low-

intensity drizzle precipitation in the PERSIANN precipitation dataset.
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1. Introduction

Understanding and quantifying the effects of global warm-

ing on regional hydrological cycles is one of themost important

problems in climate science because of the societal implica-

tions. At global scale, atmospheric moisture increases with

temperature under global warming at a rate that follows the

Clausius–Clapeyron relationship of ;7% K21, while global

precipitation increases at a much slower rate of ;2% K21

(Held and Soden 2006). This difference between the responses

of precipitation and atmospheric moisture content is related to

the constraint imposed by the atmospheric radiative cooling

due to the increased temperature and humidity, which limits

the precipitation change through the global energy and water

balances (Allen and Ingram 2002; Pendergrass and Hartmann

2014). Regional differences of the precipitation response are

much less clear, particularly over the tropics, where spatial and

temporal shifts related to dynamic and thermodynamic re-

sponses to warming can influence regional hydrology. This

challenge is further exacerbated by the persistent precipitation

distribution biases in generations of climate models, under-

mining our confidence in model projections of future changes

in precipitation. The biases that are well documented in the

simulations from phases 3 and 5 of the Coupled Model

Intercomparison Project (CMIP3 and CMIP5, respectively)

include excessive precipitation over oceanic regions off of the

equator (Hirota and Takayabu 2013; Fiedler et al. 2020), weak

South Asian monsoon rainfall (Hagos et al. 2019), and weak

Amazon precipitation (Yin et al. 2013). Understanding the

origin of these biases and how they relate to regional-scale

projections of precipitation changes is critical for building

confidence in the projections.

Several studies suggest that model precipitation biases are

related to the representation of convection. For example,

precipitation biases in coupled climate simulations can be

reproduced in uncoupledAtmosphereModel Intercomparison

Project (AMIP)-style simulations (Zhang et al. 2007; Chikira

2010) while some modifications to the parameterization of
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convection, specifically the sensitivity of convection to envi-

ronmental humidity, appear to mitigate the biases (Song and

Zhang 2009; Hirota et al. 2011; Emori et al. 2001). The non-

linear relationship between convection and environmental

humidity over the tropical oceans has been well documented

(Bretherton et al. 2004; Rushley et al. 2018; Ahmed and

Schumacher 2015, and references therein). Several studies

empirically approximate the relationship using an exponential

function with a ‘‘pick-up’’ precipitable water value at which

precipitation starts to increase rapidly with precipitable water

(Igel et al. 2017; Sahany et al. 2014). Conceptually this rela-

tionship provides a measure of the effectiveness of environ-

mental air in diluting rising plumes in moist convection (Peters

et al. 2009; Holloway and Neelin 2009, etc.) and the moistening

effect of convection on the environment. Analyzing the non-

linear relationship between precipitation and precipitable

water in the South Asian monsoon region and the equatorial

Indian Ocean, Hagos et al. (2019) identified the normalized

precipitable water in the equatorial Indian Ocean as an im-

portant metric for understanding model biases in simulating

South Asian monsoon precipitation and the intermodel spread

in future precipitation projections.

Extending the geographic focus from the South Asian mon-

soon region to the entire tropics, we aim to address two questions

in this study: What are the origins of biases in CMIP6 precipi-

tation climatology over the tropics?What are the implications of

the biases for uncertainties in the projected changes? To this end,

we first derive the precipitation–precipitable water relationship

discussed above from themoisture budget equation and examine

its representation in the historical and future climate simulations

of the newest generation of models that participated in CMIP6

and in a global reanalysis. Then the relationship is normalized

such that key parameters that control themodel behavior in both

historical and projection simulations are identified and their

physical meanings in the context of model representation of

convection are discussed.

2. Tropical precipitation climatology in CMIP6
simulations

We analyzed 17 historical simulations and 10 future simu-

lations following the Shared Socioeconomics Pathway (SSP585)

from the CMIP6 model archive. The models were selected based

on availability of daily precipitation, precipitable water, and

evaporation output, as required by the analysis. Where it is

available vertically integrated moisture convergence is directly

used; otherwise, it is estimated from the above listed variables

using the moisture budget equation. We also analyzed data from

the ERA5 dataset (C3S climate services 2017), two observational

precipitation datasets, and an observational evaporation dataset.

They are Precipitation Estimation from Remotely Sensed

Information using Artificial Neural Networks (PERSIANN;

Ashouri et al. 2015) and Tropical Rainfall MeasuringMission

(TRMM 3B42; Huffman et al. 2010) and the Woods Hole

Objectively Analyzed Flux Project daily evaporation data

(OAFlux; Yu et al. 2008). All data are remapped to uniform

28 grid spacing. The study is focused on the tropics between

208S and 208N. We analyzed two 15-yr periods: 2000–14 for

the historical simulations and 2086–2100 for the future

simulations.

In Fig. 1, we compare the mean precipitation from the 17

CMIP6 models for the historical period to the mean observed

precipitation, computed as the average of TRMMandPERSIANN

precipitation. Compared to observations, the CMIP6 multi-

model mean shows excessive precipitation over the tropical

oceans off the equator and drier conditions over the tropical

landmasses. Figure 2 shows the climatological mean of the

daily low-intensity precipitation, or drizzle, and evaporation.

For reasons that will be apparent in the next section, drizzle is

definedas precipitation rates less than0.13mmh21 (3.12mmday21).

The models have particularly excessive low-intensity precipi-

tation, which has been well documented for previous genera-

tions of models (Sillmann et al. 2013; Liu et al. 2014; Stephens

et al. 2010; Dai 2006). The corresponding evaporation fields are

shown in the right column of Fig. 2. Excess evaporation is also a

common bias in previous generation of models. In the tropics,

this bias is driven primarily by wind biases (e.g., Small et al.

2019), but also possibly related to biases in downwelling

shortwave radiation and model resolution (Demory et al.

2014). The spatial similarities between the biases in total pre-

cipitation (Fig. 1c), drizzle (Fig. 2c), and evaporation (Fig. 2f)

are striking and will be discussed later.

The effects of tropical oceanic rainfall and 850-hPa wind

biases on precipitable water over tropical landmasses are

shown in Fig. 3. Excessive CMIP6 rainfall over the tropical

oceans diverts moisture away from the tropical lands, weak-

ening the moisture transport to South Asia, Africa, and the

Amazon, resulting in dry biases over land regions. As the cir-

culation biases may be induced by precipitation biases over the

oceans through diabatic heating, we hypothesize that better

representation of the climatology of precipitation over the

oceans could reduce the perennial dry biases over land in

generations of models (Sperber et al. 2013). This hypothesis

will be examined in the next section.

3. The relationship between precipitation and
precipitable water

a. Derivation

To investigate the origins of model precipitation biases, we

first examine the processes behind the observed relationship

between precipitation and precipitable water. Consider the

vertically integrated moisture budget equation:

›(pw)

›t
5E2P2

1

g

ðps
pt

= � (vq)dp , (1)

where

pw5
1

g

ðps
pt

qdp (2)

is the column-integrated water vapor or precipitable water;

E and P are evaporation and precipitation respectively, while

ps and pt are the pressures at the surface and top of the at-

mosphere, respectively. To obtain a relationship between

precipitation and precipitable water, themoisture convergence

1588 JOURNAL OF CL IMATE VOLUME 34

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 09/29/21 12:45 PM UTC



term has to be represented as a separable function of P and pw.

To do that we introduce a variable, normalized moisture flux

convergence (NMFC), as

NMFC5

2
1

g

ðps
pt

= � (vq) dp
pw

(3)

such that the moisture budget equation can be written as

›(pw)

›t
5E2P1 (NMFC)pw: (4)

As can be seen from its definition, NMFC is related to the

vertical structure of wind divergence in relation to moisture

profile. Therefore, by continuity it is related to vertical velocity.

Over the tropical oceans tropospheric temperature gradients are

weak and diabatic heating is primarily balanced by adiabatic

cooling (Sobel andBretherton 2000; Sobel et al. 2001), leading to a

relationship among vertical velocity, static stability, and diabatic

heating (see the appendix). Using conservation of moisture, mass,

and energy, the relationship between moisture flux convergence

and precipitation was obtained in Hagos et al. (2019). Here we

focus the discussion on the physical interpretations and implica-

tions for subsequent analysis. As is apparent from (4), NMFC

plays an important role in moisture variability so its physical

interpretation deserves some discussion. Figure 4a shows the re-

lationship between wind divergence (contours) and moisture

normalized by the column integrated precipitable water [i.e.,

(q/pw)(dp/g); shading] over the tropical oceans between 208S
and 208N based on ERA5. For precipitation less than about

0.13mmh21, there are strong upper-level convergence and near-

surface divergence indicating subsidence and convective inhibi-

tion. For precipitation greater than about 0.13mmh21, near-

surface convergence (dashed green contours) increases and

deepens, and the height of maximum divergence (Fig. 4a, red

contours) increases. The profile of water vapor mixing ratio (i.e.,

the moisture mixing ratio normalized by precipitable water) is

displayed in shadings. This profile shows little change with in-

creasing precipitation. Increases in the height level of maximum

divergence as well as an increase in low-level moisture conver-

gence mean that a smaller fraction of moisture diverges with in-

creasing precipitation. Therefore, NMFC represents the strength

of convection not only in the sense of the magnitude of vertical

velocity but also in its effectiveness in converging moisture by

virtue of its vertical profile. The relationship between the diver-

gence profile and precipitation implies that NMFC increases with

precipitation, and the relationship is approximately linear as

demonstrated in Fig. 4b. Figure 4c shows the linear relationship

derived by calculating the mean NMFC values within equally

sized precipitation bins to find the intercept (0.13mmh21) at

which, in a mean sense, evaporation balances precipitation [Eq.

(4)]. The value of pw atwhich this balance occurs, pw0, which is an

important parameter in the subsequent discussion, is also calcu-

lated in a similar manner (Fig. 4d). Defining the inverse of the

slope of the regression line inFig. 4c as the precipitablewater limit

pwlim and the intercept as E0/pwlim,

NMFC5
P2E

0

pw
lim

: (5)

Before moving the analysis further, a brief discussion ofNMFC in

the context of previous work is warranted. The normalization

introduced in Eq. (3) is also relevant to the concept of gross moist

stability (GMS) put forward by Neelin and Held (1987) and fur-

ther developed by Raymond et al. (2009) and many others. The

relationship between these two concepts is made more explicit in

the appendix. As a measure of the depth of the moisture con-

vergence field, NMFC is also related to temperature and satura-

tion. For example, if the circulation is shallow, moisture can

converge and diverge close to the surfacewith little saturation and

precipitation as the near-surface temperature is warmer than the

temperature at upper levels, but the circulation could also be deep

enough to allow significant saturation and condensation.

FIG. 1. 15-yr (2000–14) mean precipitation from (a) TRMM-

3B42 and PERSIANN (mmday21) and (b) multimodel mean of

the 17 CMIP6 historical simulations, and (c) the difference of

(b) minus (a).
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Substituting Eq. (5) into Eq. (4), the moisture budget

equation can be written as

›(pw)

›t
’

�
E2

pwE
0

pw
lim

�
2P

�
12

pw

pw
lim

�
: (6)

To understand the physical meanings of pwlim and E0, consider

Eq. (6) as pw approaches pwlim. In that case pw becomes less

and less sensitive to precipitation. On the other hand, com-

bining Eq. (3) and Eq. (5) yields the following:

2
1

g

ðps
pt

= � (vq) dp5 (P2E
0
)

�
pw

pw
lim

�
: (7)

As pw approaches pwlim, the loss of moisture by the net

precipitation is compensated for by the gain throughmoisture

convergence. Thus, pwlim represents an asymptotic limit for

pw in theP–pw relationship at which precipitation is balanced

by moisture convergence. On the other hand, E0 represents

the evaporation at grid points where there is drizzle but no

moisture convergence. It is considered constant over the

domain and the value is given for each model (legend

in Fig. 6).

The above derivations and analyses show that the mois-

ture budget can be used to understand the relative control of

moisture convergence and evaporation on precipitation in

the low-intensity and high-intensity regimes. Here we will

demonstrate that the P–pw relationship can be derived from

the moisture budget using the physical quantities pwlim, pw0,

and E0 defined above. Under steady state Eq. (6) can be

written as

FIG. 2. (left) 15-yr (2000–14) mean drizzle precipitation (precipitation, 3.12mmday21) from (a) TRMM-3B42 and

PERSIANN (mmday21) and (b) multimodel mean of the 17 CMIP6 historical simulations, and (c) the difference of

(b)minus (a). (right) 15-yr (2000–14)mean evaporation from (d)WoodsHoleOAFlux Project evaporation (mmday21)

and (e) multimodel mean of the 17 CMIP6 historical simulations, and (f) the difference of (e) minus (d).
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P5

E2
pw

pw
lim

E
0

12
pw

pw
lim

: (8)

Equation (8) provides a P–pw relationship but it is not unique

since it depends on evaporation. Of all the P–pw curves that arise

from Eq. (8), the one that goes through (pw5 pw0, E5 E0) is of

most interest to us as it represents the mean P–pw relationship

when variability in evaporation and precipitable water ten-

dencies are neglected. Therefore, the numerator in (8) be-

comes E0(1 2 pw0/pwlim). After collecting (pwlim 2 pw0) and

(pw2 pw0) from the numerator and denominator respectively,

Eq. (8) can be written as

P5
E

0

12

�
pw2pw

0

pw
lim

2pw
0

� . (9)

It should be noted that (9) is not prognostic; rather, it should be

interpreted as a state defined by precipitation drying, precipi-

table water, and the vertical structure of moisture convergence

about which P and pw fluctuate under the prescribed evapo-

ration E0.

The analysis of Fig. 4 is repeated with all 17 CMIP6 historical

simulations (Fig. 5) and the 10 SSP585 simulations (not

shown), showing that the linear relationship in Fig. 4b based on

ERA5 holds for the CMIP6 models. The model results are

shown in blue, green, and red based on the value of pwlim, the

FIG. 3. Mean local summer precipitable water and 850-hPa circulation for three tropical landmasses from (a),(d),(g) ERA5 and (b),(e),(h)

CMIP6 MMM, and (c),(f),(i) their differences.
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asymptotic pw limit, falling in the lower, middle, and higher

terciles, respectively, of the multimodel ensemble. This color

scheme is used in all subsequent plots. The parameter pwlim

varies widely amongmodels. Similarly, the x-intercept valueE0

for which evaporation at NMFC equals zero [Eq. (5)] is shown

in Fig. 6a for each CMIP6 historical simulation. Note that E0

has a range of values between 0.15 to 0.19mmh21, all higher

than that for ERA5, which is 0.13mmh21. We set the

threshold for drizzle precipitation as the value of E0 derived

from ERA5 (E0 5 0.13mmh21 or 3.12 mmday21). Recall

that E0 corresponds to the evaporation (and precipitation)

rate when NMFC is equal to zero. Rain rates below this E0

threshold, defined as low-intensity precipitation, are pri-

marily controlled by evaporation rather than by moisture con-

vergence. Note that this threshold is smaller than 0.3mmh21

typically used as the drizzle threshold in an operational context

(e.g., AMS Glossary).

Equation (9) implies that one can construct the relationship

between P and pw from pwlim, pw0, and E0, which are already

obtained for each model from the above analysis. Figure 7a

shows the actual relationship obtained by partitioning the 15

years of daily pw (tropical ocean points only) into 80 bins and

averaging the corresponding daily precipitation in each bin.

Figure 7b is the idealized relationship reconstructed from

Eq. (9) using values of pwlim, pw0, and E0 determined for each

model. The idealized relationship captures themain features of

the P–pw relationship and the differences among the models,

as demonstrated by the correspondence between the color

associated with eachmodel relative to ERA5 in the two panels.

Our analysis shows that, to first order, the relationship between

precipitation and precipitable water 1) is governed bymoisture

conservation and 2) can be uniquely defined by two pw values

pwlim and pw0. When pw approaches pwlim, precipitation is

balanced by moisture convergence, but when pw approaches

pw0 precipitation is balanced by evaporation. Each critical pw

value is set by the vertical structure of moisture convergence and

its relation to precipitation (Fig. 4). In many ways, pw0 and pwlim

together play similar roles as wc and b of Neelin et al. (2009) in

that they determine the ‘‘pickup point’’ and the growth rate of

precipitation with pw. As the atmosphere warms up, they both

increase such that theP–pw curves shift and stretch to the right, as

one would expect from the Clausius–Clapeyron relation. The

idealized P–pw relationship will be used to analyze model diver-

sity and biases from the CMIP6 simulations next.

FIG. 4. (a) The relationship of water vapor profile (shading) and wind divergence (105 s21) with precipitation in

ERA5. The blue line represents the approximate precipitation value where the NMFC is zero. (b) Moisture flux

convergence profile [NMFC; Eq. (3)] vs precipitation. The term pwlim is defined as the inverse of the slope of the

regression line. (c) The relationship between precipitation and normalized moisture flux convergence (NMFC) for

ERA5. (d) As in (c), but against precipitable water the points at which (NMFC) is zero. Values of E0 and pw0

are shown.
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b. Normalization of precipitable water

Here we examine the origins of precipitation biases and inter-

model spread. Since theP–pw curves for the diversemodels are of

the same form, appropriate normalization could yield a general

relationship for a straightforward interpretation.

Equation (9) can be written more concisely by defining a

normalized precipitable water as pwn 5 pw/(pwlim 2 pw0),

such that

P5
E

0

12 (pw
n
2 pw

nc
)
, (10)

where

pw
nc
5

pw
0

pw
lim

2pw
0

(11)

is defined as the normalized critical precipitable water.

Equation (10) implies that precipitation can be estimated using

pwn 2 pwnc and E0. The raw and normalized forms of the P–pw

relationship are plotted in Figs. 8a and 8c, while the actual and

estimatedP frequency distributions are plotted in Figs. 8b and 8d.

As predicted by Eq. (10) normalization reduces the spread in the

P–pw relationships and in the pw frequency distributions. Note,

however, that the normalized P–pw curves diverge near pwn 2
pwnc5 0.5 (Fig. 8c); because of the nonlinearity, small differences

at higher PW lead to larger spread in precipitation than at low pw.

FIG. 5. As in Fig. 4b, but for 16 of the CMIP6model historical simulations. The blue, green, and red colors correspond to models with low,

medium, and high historical pwlim, respectively.
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To understand the physical implications of Eq. (10), con-

sider the normalized P–pw relationship at its limits. At one

extreme with pwn � pwnc, P ’ E0/(1 1 pwnc). That is, pre-

cipitation is largely controlled by surface evaporation and is

essentially independent of the local precipitable water. This

regime corresponds to the widespread drizzle over high evap-

oration areas. In Fig. 4a, pwn � pwnc corresponds to strong

subsidence (left of the blue line) where wind divergence is

confined to shallow levels, efficiently transporting moisture out

of the column. At the other extreme with pwn / 1 1 pwnc or

pw/ pwlim, P/E0 becomes very large (Figs. 8a,c) and is much

more sensitive to the precipitable water. Thus pwnc can be

thought of as a form of convective inhibition (e.g., the strength

of upper-level convergence and subsidence in Fig. 4a) that a

moist column must overcome to transition to deep convection.

Before discussing the implications of this for model biases and

projections the next section, there is one more point worth

mentioning. Equation (10) is of the form y5 1/(12 x), which at

first glance appears different from exponential form used in

several previous studies to empirically fit observed and mod-

eled P–pw relationships. Note however that for small x, 1/(12
x) can be approximated by 11 x, which is also true for ex. That

FIG. 6. (a) The relationship between precipitation and normal-

ized moisture flux convergence (NMFC) for all the CMIP6 his-

torical simulations. (b) As in (a), but against precipitable water. E0

and pw0 are provided in the legend. The blue, green, and red colors

correspond to models with low, medium, and high historical pwlim,

respectively.

FIG. 7. (a) The relationship between precipitation and precipi-

table water from the models and ERA5, and (b) that derived from

Eq. (9) using the respective E0, pwlim, and pw0 values for each

CMIP6model historical simulation and for ERA5. The blue, green,

and red colors correspond to models with low, medium, and high

pwlim, respectively.
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appears to us to be a mathematical coincidence. The above

analysis suggests that the former is a physically sound rela-

tionship since it follows from conservation of moisture, mass,

and energy under weak temperature gradient.

4. Model biases and projections

a. Characterizing model biases and spread

The convergence of the P–pw relationship (Fig. 8c) and the

frequency distribution of pw after normalization (Fig. 8d) suggests

that pwnc, a measure of convective inhibition, and E0, the evap-

oration under neutral NMFC (i.e., NMFC 5 0), may be useful

metrics for characterizing rainfall biases in models. Figure 9

shows a scatterplot of these two parameters. In comparison to

the parameters derived from ERA5, all models have higher E0,

implying that themodels producemore rain in the form of drizzle

than ERA5 in the absence of moisture convergence (Figs. 2 and

6a). Most models also have higher pwnc than ERA5, implying

stronger convective inhibition than in observations, which means

it takes more moisture to transition from drizzle to intense con-

vection in the models. The fact that most models overestimate

pwnc implies they have a greater-than-observed frequency of days

with pwn smaller than pwnc (or pw , pw0; Fig. 8d). Most of the

models have frequency distribution with respect to pwn 2 pwnc

that is extended to the left compared to ERA5 (Fig. 8d).

The difference inmean drizzle precipitation (daily precipitation,
3.12mmday21) between the five models with lowest and highest

pwnc is shown in Fig. 10. As predicted by the analysis, the low pwnc

models have much less drizzle. These models also simulate heavier

total precipitation over Africa, South Asia, and the Maritime

FIG. 8. (a) The relationship between precipitation and precipitable water in historical and ssp585 simulations and

(b) the frequency distributions of precipitable water. (c),(d) As in (a) and (b), but both pw and P are normalized

(see text). The blue, green, and red colors correspond to models with low, medium, and high historical pwlim,

respectively.

FIG. 9. (a) Scatterplot of E0 vs pwnc for the 17 CMIP6 models and

ERA5 dataset.
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Continent. These results support the hypothesis put forward in the

first section that the dry bias over tropical landmay be related to the

excess low-intensity precipitation over the high evaporation regions

of the tropical ocean that limits the moisture transported to the

landmasses through geostrophic adjustment.

b. Projected change in precipitation

Finally, the response to warming is examined in the nor-

malized precipitable water framework. To understand the

implication of the normalization of precipitation for projected

change in precipitation, we consider the partial derivative of

Eq. (9) with respect to E0 and pwnc:

DP

P
’

DE
0

E
0

2

�
P

E
0

�
Dpw

nc
: (12)

Note that the term in the square brackets is nearly model in-

dependent and does not change much with warming as implied

by the collapse of the P–pw curves into one after normalization

(Fig. 8c). Figure 11 shows the end of the twenty-first-century

fractional change in precipitation under the SSP585 scenario

versus the corresponding change in pwnc and E0. The change in

precipitation has a stronger relationship with Dpwnc under

warming than with DE0. Six of the 10 models show a decrease in

Dpwnc and they have larger fractional increase in precipitation.As

pwnc is a function of pw0 and pwlim [Eq. (11)], its future change

represents the combined effect of both thermodynamic change

(increase in moisture represented here by increase in pwlim) and

the dynamic change (increase in inhibition or stability represented

by increase in pw0). Figure 11c shows the changes in both pwlim

and pw0. Both changes are also depicted in the rightward shift of

the P–pw curve and the pw frequency under warming (Figs. 8a,b,

dashed lines). The dominance of thermodynamic change is re-

flected in the stronger response of pwlim to warming (and there-

fore the decrease in pwnc). Both changes in pwlim and pw0 in the

models as responses to warming are related to the equilibrium

climate sensitivity (ECS) of the models (Fig. 11d). Models with

larger climate sensitivity have a larger change in pwlim as one

would expect from the Clausius–Clapeyron relation and a corre-

sponding larger increase in pw0 as stability increases as well.

c. Historical trends

In the last subsection we show that the change in precipita-

tion in response to warming can be represented by the decrease

in pwnc, that is, the net decrease in convective inhibition re-

sulting from the competing effects of increase in moisture

(pwlim) and increase in pw0 (Fig. 11c). This raises the question

of whether trends in pwlim and pw0 can be detected in the

global reanalysis and the observed precipitation. To address

this question the trends in 40 years of pwlim and pw0 values are

calculated from ERA5. Because of the nonlinear nature of the

P–pw relationship, a slight decrease in pwnc leads to a shift of

many points from the evaporation-controlled drizzle regime to

the pw-controlled regime. Thus we expect a rapid increase in

precipitation near pwnc. To verify this expectation, we com-

puted the historical precipitation trends using 36 years of

PERSIANN daily drizzle precipitation (precipitation ,
3.12mmday21 as defined above). Figure 12 shows the trends

normalized by their corresponding historical mean values. The

statistical significances of the trend in ERA5 pwlim and pw0 as

well as that of the drizzle precipitation trend from PERSIANN

are tested using the Kendall’s tau (KT) test (Kornbrot 2014)

and the p values shown in the figure indicate that the trends are

statistically significant. Even though there are also increasing

trends in the critical normalized precipitable water fromERA5

and total precipitation from PERSIANN (not shown), they are

not found to be statistically significant according to the KT test.

This is consistent with the competing effects of the changes in

pwlim versus pw0 on the changes in pwnc, rendering larger un-

certainty in estimating the changes in pwnc and the total pre-

cipitation compared to the changes in drizzle precipitation,

which are determined by changes in pw0 alone.

5. Conclusions

Several previous studies have documented the excess pre-

cipitation over tropical oceans and dry biases over tropical

landmasses in multiple generations of CMIP models. Motivated

by these persistent biases and the uncertainties in the projected

changes, we developed a new framework to study the moisture

budgets of the ERA5 dataset and CMIP6 simulations. This

framework reveals that the regional distribution of precipitation,

specifically whether precipitation occurs preferentially over high

FIG. 10. (a) The difference inmean precipitation between the top

and bottom five models according to their critical normalized

precipitable water (pwnc). (b) As in (a), but for precipitation

, 3.12mmday21.
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evaporation areas (which leads to ‘‘double ITCZ’’) or high pre-

cipitablewater areas (Fig. 10), is related to the vertical structure of

moisture flux convergence and how it relates to precipitation in-

tensity. It is shown that thewell-documented relationship between

precipitation (P) and column integrated precipitable water (pw)

can be uniquely defined by two critical pw values: the pw where

precipitation balances evaporation, and the pw where precipita-

tion balances moisture flux convergence (Fig. 6). When the raw

pw is scaled by the difference of these two values, one can define a

normalized critical precipitable water, pwnc, which is ameasure of

convective inhibition that separates tropical precipitation into two

regimes: a local evaporation-controlled regime with widespread

drizzle, and a precipitable water–controlled regime with heavy

rainfall. Compared to ERA5, most of the 17 CMIP6 model his-

torical simulations examined have both higher pwnc (convective

inhibition) and E0 (evaporation and precipitation balance point),

and too much drizzle (Fig. 9). It is also shown that the magnitude

of the response to warming is also linearly related to the change in

pwnc. A robust increasing trend in both the pw values that define

the P–pw relationship are detected in ERA5 and the implied

trend of low-intensity precipitation is also observed in the

PERSIANN precipitation dataset (Fig. 12).

There is increased recognition of the role of representation

of entrainment and detrainment processes in defining theP–pw

relationship, not just in the inhibition or promotion of con-

vection by environmental moisture at diurnal and subdiurnal

time scales (Derbyshire et al. 2004; Tompkins 2001; Ahmed

and Neelin 2018) but also through the impact of convection on

the moisture budget of the column itself at longer time scales

(Kuo et al. 2017; Singh et al. 2019; Emanuel 2019). In the

framework presented in this study, we use daily averages of P

and pw, and the analytical solutions are derived from a steady-

state form of conservation of moisture; thus, they represent a

steady-state relationship about whichP and pw fluctuate. From

the short time scale perspective, the critical normalized pre-

cipitable water derived in this study represents a measure of

inhibition that the normalized moisture must exceed for deep

convection to take place. That inhibition depends on the how

rapidly the updraft deepens with increasing precipitation and

therefore to what extent the column-integrated moisture con-

vergence compensates for the moisture loss by precipitation.

Thus, the normalized precipitable water framework (specifi-

cally the critical normalized precipitable water parameter)

could be a theoretical tool for interpreting the combined

FIG. 11. (a) The percentage difference in P vs in pwnc between historical (2000–14) and SSP585 (2086–2100)

simulations. (b)As in (a), but for change inP and inE0. (c) SSP585 pw0 and pwlim (mm) vs their historical values. (d)

Change in pw0 and pwlim (mm) under the SSP585 scenario vs equilibrium climate sensitivity (ECS).
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effects of promotion of convection by environmental moisture

as well as the moistening effect of convection in parameteri-

zations of entrainment and detrainment in climate models.

Furthermore, although the normalized precipitable water

framework is inherently nonspatial, it can provide insights into

model biases in the spatial distribution of rainfall, particularly

over tropical landmasses versus ocean.
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APPENDIX

Relationship between Normalized Moisture Flux
Convergence and Gross Moist Stability

Using the steady-state form of the dry static energy and

moisture equations [Eq. (2.3) in Raymond et al. 2009], nor-

malized gross moist stability can be written as

G
R
52

T
R

ðps
pt

= � (ys)dp

L

ðps
pt

= � (yq) dp
, (A1)

where TR 5 300K is a reference temperature, L is the latent

heat of condensation, y is horizontal wind, and s is specific

moist entropy. CombinedwithEq. (3), (A1) can be rewritten as

NMFC52

T
R

ðps
pt

= � (ys)dp
LpwG

R

: (A2)

Using Eq. (2.1) of Raymond et al. (2009), again for steady state,

(A2) can be written as

2G
R
NMFC5

T
R
(F

s
2R)

Lpw
, (A3)

where Fs is the moist entropy flux due to surface fluxes of heat

and moisture and R is the pressure integral of the entropy sink

due to radiative cooling. Equation (A3) states that the strength

of convection (NMFC) is related to the diabatic heating and

stability. This is analogous to the weak temperature gradient

representation of the energy conservation (Holton 1992):

2S
p
v5 J/C

p
, (A4)

where Sp is static stability, v is pressure vertical velocity, and J

is diabatic heating. Hence it is not surprising that the linear

relationship between NMFC with precipitation follows from

(A4) (Hagos et al. 2019).
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